Optimize to find a real algo trading edge, not a stochastic illusion

This tutorial shows just how difficult it is to distinguish between a genuine trading edge and stochastic (random) results when optimizing a trading system.

Martyn TinsleyMartyn Tinsley

In this series, Martyn Tinsley embarks on a journey to challenge the backtesting and optimization status quo that prevails among many algorithmic traders. In this first tutorial, he demonstrates how parameter values that provide no edge at all often appear to perform in an optimization, as if they do.

He also demonstrates how parameter values with little or no edge can often produce 'far better' results in an optimization than the parameters that offer the best edge, and the best chance of success in the long term. This is due to the stochasic (random) effect prevelent in all backtesting processes.

Finally, a solution is proposed involving increasing the sample size (number of trades) that the system generates.

This video is a "must-watch", and every algorithmic trader needs to be aware of this phenomenon, otherwise they could be choosing ineffective parameter values from optimizations, based on stochastic effects, leading to sub-standard performance when traded in a live account.

About The Creator

Martyn Tinsley - Algorithmic Trader

A passion for all things analytical, and in particular for automated algorithmic trading. Founded Trade Like A Machine to promote best-practice trading system development and optimization techniques, helping other algo traders succeed.

Like what you've read today? Then please consider sharing

Subscribe to our newsletter

By subscribing you are giving your consent to send you emails in accordance with our privacy policy

About Us

We are passionate about algorithmic trading, and about helping other algorithmic traders reach their full potential.

We help traders to develop robust trading systems that deliver results in live accounts.


Built in Yorkshire, UK
Proudly serving Europe and the World